
Modeling and Validating Hybrid Systems Using VDM and
Mathematica

Bernhard K. Aichernig and Reinhold Kainhofer
Institute for Software Technology (IST),

Technical University Graz, Münzgrabenstr. 11/II, 8010 Graz, Austria

Abstract

Hybrid systems are characterized by the hybrid
evolution of their state: A part of the state changes
discretely, the other part changes continuously over
time. Typically, modern control applications be-
long to this class of systems, where a digital con-
troller interacts with a physical environment. In
this article we illustrate how a combination of the
formal method VDM and the computer algebra sys-
tem Mathematica can be used to model and simu-
late both aspects: the control logic and the physics
involved. A new Mathematica package emulating
VDM-SL has been developed that allows the in-
tegration of differential equation systems into for-
mal specifications. The SAFER example from [11]
serves to demonstrate the new simulation capabili-
ties Mathematica adds: After the thruster selection
process, the astronaut’s actual position and veloc-
ity is calculated by numerically solving Euler’s and
Newton’s equations for rotation and translation.
Furthermore, interactive validation is supported by
a graphical user interface and data animation.

1 Introduction

Modern control applications are realized through
microcontrollers executing rather complex control
logics. This complexity is increased by the fact that
control software interacts with a physical environ-
ment through actors and sensors. Such systems are
called hybrid systems due to the hybrid evolution of
their state: One part of the state (variables) changes
discretely, the other part changes continuously over
time.

Hybrid systems are excellent examples for moti-
vating the use of formal software development meth-
ods. First, their complexity calls for a real soft-
ware engineering discipline applying both, a pro-

cess model as well as a mathematical method. Sec-
ond, these kinds of systems are often safety-critical
which justifies formal validation and verification
techniques. Third, engineers in the control domain
are educated in the use of mathematical models for
designing dynamic systems.1 In our experience, the
offer of a formal method for software development
is more often appreciated by control engineers, than
by software developers used to produce short cycle
products in ’Internet time’.

In [11] the hybrid system SAFER has been cho-
sen by NASA in order to introduce to formal spec-
ification and verification techniques. SAFER is
an acronym for “Simplified Aid For EVA (Ex-
travehicular Activity) Rescue”. It is a small,
lightweight propulsive backpack system designed to
provide self-rescue capabilities to a NASA space
crewmember separated during an EVA. In this
NASA guidebook[11], SAFER is specified formally
in the PVS notation and properties are formally
proved using the PVS theorem prover [12]. In the
guidebook the dynamic aspects are used to com-
pare the continuous domain model from spacecraft
attitude control with the discrete PVS model of
SAFER’s control logic. It demonstrates that the
two models have the same goals: rigorous descrip-
tion and prediction of behavior but that the needed
mathematics and calculation techniques are differ-
ent.

In [1, 2] Agerholm & Larsen have proposed
a cheaper testing based validation approach to
the SAFER example using an executable VDM-SL
model and the IFAD VDM-SL Toolbox [10, 7, 6].
They recommend the use of a specification executor
and animator for raising the confidence in a formal
model prior to formal proving.

We agree with Agerholm & Larsen’s arguments
for such a “light-weight” approach to formal meth-

1The same holds for software developers coming from clas-
sical engineering disciplines.

ods in order to facilitate the technology transfer.
Since in several industrial projects performed at
our institute a similar experience has been made
[9, 15, 5], one of our research areas has become the
support of testing through formal methods [4].

However, neither the PVS nor the VDM-SL
model of SAFER did take the continuous physical
models into account. The reason is that, in gen-
eral, today’s formal method tools are not well suited
for supporting continuous mathematics. This paper
shows a solution the problem.

In the following it is demonstrated how an ex-
plicit discrete model can be combined with the con-
tinuous physical model for validation and anima-
tion. With the right tool there is no reason why a
physical model should not be included in the valida-
tion process of a hybrid system. Just the opposite
is the case: [1] detected several cases where the in-
terface to a cut out automatic attitude hold (AAH)
control unit needed further clarification.

In this work the commercial computer algebra
system Mathematica [16] has been used to overcome
the gap between discrete and continuous mathemat-
ics. A VDM-SL package has been implemented that
allows to specify in the style of the Vienna Develop-
ment Method (VDM) inside Mathematica. Thus,
explicit discrete models can be tested in combi-
nation with differential equation systems modeling
physical behavior by solving the equations on the
fly. Even pre- and post-condition checking is pos-
sible. Again, NASA’s SAFER system serves as the
demonstrating example. The VDM-SL specification
of [2] has been taken and extended with the physics
involved in SAFER, expressed through differential
equations. More precisely, the physical behavior is
movement in space, modeled by the laws for transla-
tion and rotation — Newton’s and Euler’s equations
for three dimensional space.

Beside the execution (testing) of hybrid models,
Mathematica’s front-end supports the visual valida-
tion of such systems. The graphical user-interface
for SAFER’s hand grip is implemented inside the
computer algebra system as well as a scientific graph
representing the movement of a crew-member using
SAFER. After each control cycle, actual physical
vectors like angular velocity or acceleration can be
inspected together with the logical status, e.g. the
thrusters firing. Finally, it is even possible to an-
imate a sequence of performed control-cycles as a
movie showing the SAFER representation flying.

The structure of the rest of the paper is as fol-
lows. First in Section 2 an overview of the SAFER
system is given, which will serve as the demonstrat-

Figure 1. SAFER thrusters.

ing example throughout the paper. This is followed
by a discussion of VDM-SL and its realization in-
side Mathematica in Section 3. Then, a description
of the discrete SAFER model is given in Section
4. Section 5 explains the differential equation sys-
tems modeling SAFER’s physics and the coordinate
transformations needed. Then, Section 6 introduces
to the hybrid model and demonstrates the integra-
tion of VDM-SL and differential equation systems.
Next, the validation capabilities of our approach are
discussed in Section 7 and Section 8. In the final
Section 9 we draw some conclusion regarding the
presented work in particular, as well as possible fu-
ture approaches in general.

2 The SAFER System

The following overview of the SAFER system is
based on, and partly copied from, the NASA guide-
book [11], which describes a cut-down version of a
real SAFER system.

The Simplified Aid for EVA Rescue (SAFER) is
a small, self-contained, backpack propulsion system
enabling free-flying mobility for a NASA crewmem-
ber engaged in extravehicular activity (EVA). It is
intended for self-rescuing on Space Shuttle missions,
as well as during Space Station construction and op-
eration, in case a crewmember got separated from
the shuttle or station during an EVA. This type of
contingency can arise if a safety tether breaks, or
if it is not correctly fastened. SAFER attaches to
the underside of the Extravehicular Mobility Unit

(EMU) primary life support subsystem backpack
and is controlled by a single hand controller that
is attached to the EMU display and control mod-
ule. Figure 1 shows the backpack propulsion system
with the 24 gaseous-nitrogen (GN2) thrusters, four
in each of the positive and negative X, Y and Z
directions. For example, the thrusters denoted by
5-F1, 6-F2, 7-F3 and 8-F4 are firing backwards (indi-
cated by the arrows) resulting in a forward motion.

The main focus of the discrete specification is
on the thruster selection logic, which is rather com-
plex due to a required priorization of hand controller
commands. Various display units and switches
which are not directly related to the selection of the
thrusters have been ignored in our model. However,
in contrast to [11] and [1] the calculation of the con-
trol output in the Automatic Attitude Hold (AAH)
is not ignored, but simulated based on a dynamic
model of the physics discussed in Section 5.

Figure 2. Hand controller module of
SAFER.

The hand controller, shown in Figure 2, is a
four-axis mechanism with three rotary axes and one
transverse axis using a certain hand controller grip.
A command is generated by moving the grip from
the center null position to mechanical hard-stops
on the hand controller axes. Commands are ter-
minated by returning the grip to the center po-
sition. The hand controller can operate in two
modes, selected via a switch, either in translation
mode, where X (forward-backwards), Y (left-right),
Z (up-down) and pitch commands are available, or
in rotation mode, where roll, pitch, yaw and X
commands are available. The arrows in Figure 2
show the rotation mode commands. Note that X
and pitch commands are available in both modes.

Pitch commands are issued by twisting the hand
grip around its transverse axis, while the other com-
mands are obtained around the rotary axis.

A push-button switch on top of the grip initiates
and terminates AAH according to a certain proto-
col. If the button is pushed down once the AAH is
initiated, while the AAH is deactivated if the button
is pushed twice within 0.5 seconds.

As mentioned above there are various priorities
among commands that make the thruster selec-
tion logic rather complicated. Translational com-
mands issued from the hand controller are priori-
tized, providing acceleration along a single transla-
tional axis, with the priority X first, Y second, and
Z third. When rotation and translation commands
are present simultaneously from the hand controller,
rotations take higher priority and translations are
suppressed. Moreover, rotational commands from
the hand grip take priority over control output from
the AAH, and the corresponding rotation axes of
the AAH remain off until the AAH is reinitialized.
However, if hand grip rotations are present at the
time when the AAH is initiated, the corresponding
hand controller axes are subsequently ignored, until
the AAH is deactivated.

In [1] it is explained how a specification inter-
preter tool facilitates the validation of the require-
ments listed in the appendix of the NASA guide-
book. Moreover, it is demonstrated that formal val-
idation techniques uncover open issues in informal
requirements even if they seem to be straightfor-
ward and clear.

The same validation techniques as discussed in
[1] can be applied in our Mathematica based frame-
work — and more. However, before we discuss the
value added through a hybrid model, in the follow-
ing section, the realization of our VDM-SL package
is discussed.

3 VDM-SL in Mathematica

VDM-SL is the specification language of the Vi-
enna Development Method (VDM) [10, 7]. VDM
is a widely used formal method, and it can be ap-
plied to the construction of a large variety of sys-
tems. It is a model-oriented method, i.e. its for-
mal descriptions (specifications) consist of an ex-
plicit model of the system being constructed. More
precisely mathematical objects like sets, sequences
and finite mappings (maps) are used to model a
system’s global state. Additional logic constraints,
called data-invariants, allow one to model informal
requirements by further restricting specified data-

types. For validation purposes the functionality
may be specified explicitly in an executable subset
of VDM-SL. In addition, pre- and post-conditions
state what must hold before and after the evalua-
tion of a system’s operation. Although VDM-SL
is called a general purpose specification language it
does not support the specification of dynamic sys-
tems. The language’s ISO-standard [13] does not
even include standard functions like sine or cosine.

Here, as the name indicates, Mathematica’s
strengths supplement our combined approach.
Mathematica is a symbolic algebra system that of-
fers the opportunity of solving arbitrary non-linear
as well as linear systems of equations. Mathemat-
ica’s language interpreter is in fact a rewriting sys-
tem providing an untyped functional programming
language. For an introduction to functional pro-
gramming in Mathematica see [3]. This program-
ming language has been used in order to define a
package emulating the specification language VDM-
SL. By emulating we express the fact that the pack-
age does not allow one to write specifications in
VDM-SL’s concrete syntax, but in its abstract syn-
tax with some pretty printing for VDM-SL output.

Mathematica’s user interface are so called note-
books, fancy editors structured in cells for input,
output or plain text. Entering a Mathematica ex-
pression in an input cell, the system tries to evaluate
this input through a rewriting procedure based on
pattern matching.

The following language constructs have been
added to the standard language in order to import
the VDM-SL model from [2]:

• abstract datatypes for composite types, sets,
sequences and maps

• comprehension expressions for sets, sequences
and maps

• let and cases expressions

• operators for propositional and predicate logic

• types optionally restricted by data-invariants

• value and global state definitions

• typed function/operation definitions with pre-
and post-conditions

Some of the items above deserve a more detailed
discussion.

Comprehensions

A powerful feature of a specification language
like VDM-SL is its ability to construct collection
types like sets, sequences and maps through com-
prehensions. For example, a set-comprehension de-
fines a set through an arbitrary expression describ-
ing the set-elements with its free variables ranging
over a set of values, such that an optional condi-
tion holds. The following example demonstrates
the value added through a computer algebra sys-
tem. The set-comprehension

set[x|{x ∈ Z} · {x6 − 44x
5

+ 318x
4

+ 4102x
3

−4461x2 + 550x + 8750 == 0}]

represents a set of elements x, where x is an integer
number such that the equation holds.

The resulting set2

set[−7,−1, 25]

demonstrates that, unlike IFAD’s VDM-SL inter-
preter, comprehensions ranging over infinite sets
may be evaluated.

Types

As already mentioned, in contrast to VDM,
Mathematica has an untyped language. Conse-
quently, no type checking mechanism is available.
However, types are an important tool for specifying
a data-model in VDM. Therefore, type declarations
of the form Type[name, type] have been included,
where type is one of the predefined VDM-SL types,
like basic types, composite types, sets ... For exam-
ple, a type ISet representing a set of natural num-
bers might be declared by Type[ISet, set[N]].

Optionally, a type can be further constrained by
a data-invariant condition. Such invariant types
are defined by Type[name, type, Invariant− >
predicate]. The predicate is defined by a lambda
expression mapping type to a Boolean value. All
the invariants are globally stored in the system for
invariant checking, before and after the evaluation
of a VDM function.

Internally, a type is translated to a Mathematica
pattern, matching those values the type denotes.
Invariant types are supported by the possibility of
defining patterns with arbitrary predicates. These
patterns restrict the argument range in the defini-
tion of typed VDM functions.

2The six solutions including double and complex solutions
are: −7,−1, 1− I, 1 + I, 25, 25.

Functions

Using the VDM-SL package, typed functions
with pre- and post-conditions can be defined using
the constructor

VDMFunction[id, sig, id[vars] := body, pre, post]

with the following parameters:

id the name of the function,

sig the signature of the function,

id[vars] := body the function definition,

pre an optional pre-condition stating what must
hold before the evaluation such that the post-
condition holds,

post an optional post-condition stating what must
hold after the evaluation.

VDMFunction realizes a complex call to Mathemat-
ica’s internal Function call and emulates the checks
for

• the signature types,

• pre- and post-condition,

• data-invariants.

4 Discrete Model

In order to demonstrate the Mathematica pack-
age the same functions for the thruster selection
logic as in [1] are presented in this section. The
six degree-of-freedom of the translation and rota-
tion commands is modeled using a composite type:

Type[SixDofCommand, Composite[{"tran", TranCommand},
{"rot", RotCommand }]]

whose two fields are finite maps from translation
and rotation axis respectively to axis commands.
For example the type of translation commands is
defined as follows:

Type[TranCommand, TranAxis -> Axiscommand,
Invariant -> (dom[#] == set[X,Y,Z]&)]

where the invariant ensures that command maps
are total. Here, the invariant predicate is defined
by a lambda expression in Mathematica’s notation
of pure functions. The type of rotation commands
is defined similarly. Enumerated types are used for
axis commands and translation and rotation axes:

VDMFunction[
SelectedThrusters,

AUX‘SixDofCommand × AUX‘RotCommand ×
set[AUX‘RotAxis] × set[AUX‘RotAxis]

-> ThrusterSet,
SelectedThrusters[hcm, aah, actAxes, ignHcm] :=
let[{tran, rot, bfMandatory,bfOptional,

lrudMandatory,lrudOptional,bfThr,lrudThr},
{tran, rot} =

(IntegratedCommands[hcm,aah,actAxes,ignHcm]
/. SixDofCommand[tr_,ro_]:->tr,ro);

{bfMandatory, bfOptional} = BFThrusters[tran[X],
rot[PITCH],
rot[YAW]];

{lrudMandatory, lrudOptional} =
LRUDThrusters[tran[Y],

tran[Z],
rot[ROLL]];

bfThr = If[(rot[ROLL] === ZERO),
bfOptional ∪ bfMandatory,
bfMandatory];

lrudThr = If[(rot[PITCH] === ZERO) and
(rot[YAW] === ZERO),
lrudOptional ∪ lrudMandatory,
lrudMandatory];

set @@ (bfThr ∪ lrudThr)
]

];

Figure 3. The SelectedThrusters function.

Type[AxisCommand, NEG | ZERO | POS];

Type[TranAxis, X | Y | Z];

Type[RotAxis, ROLL | PITCH | YAW]

In the SelectedThrusters function in Fig-
ure 3 grip commands from the hand controller
(with six-degree-of freedom commands) are in-
tegrated with the AAH control output. The
IntegratedCommands function prioritizes hand con-
troller and AAH commands.

Based on these commands, thrusters for back and
forward accelerations and left, right, up and down
accelerations are calculated by two separate func-
tions. Figure 4 presents cut-down versions of these
functions. These represent a kind of look-up ta-
bles, modeled using cases expressions. Note that
they return two sets of thruster names, represent-
ing mandatory and optional settings respectively.

5 Physics Involved in SAFER

This section presents the continuous model of
the physics involved in our hybrid model. For the
SAFER example, translation and rotation equations
from mechanics are sufficient for modeling the mo-
tion of a crewmember using the propulsion system.
The purpose of this model is twofold: First, we need
to calculate the sensor inputs of angular velocity for
simulating the AAH. Second, in order to visualize

VDMFunction[
BFThrusters,

AUX‘AxisCommand × AUX‘AxisCommand × AUX‘AxisCommand
-> ThrusterSet × ThrusterSet,

BFThrusters[A, B, C] :=
cases[{A, B, C},
{NEG, ZERO, ZERO} -> {{B4}, {B2,B3}},
{ZERO, ZERO, ZERO} -> {{}, {}},
{POS, NEG, ZERO} -> {{F1,F2}, {}},
...

]
];

VDMFunction[
LRUDThrusters,

AUX‘AxisCommand × AUX‘AxisCommand × AUX‘AxisCommand
-> ThrusterSet × ThrusterSet,

LRUDThrusters[A, B, C] :=
cases[{A, B, C},
{NEG, NEG, ZERO} -> {{}, {}},
{NEG, ZERO, ZERO} -> {{L1R,L3R}, {L1F,L3F}},
{POS, ZERO, POS} -> {{R2R}, {R2F,R4F}},
...

]
];

Figure 4. Extracts from BFThrusters and
LRUDThrusters.

the SAFER movement, absolute coordinates have
to be determined. The mathematics needed can be
found in the standard literature of mechanics, like
[8].

Translation

The translation of a crewmember wearing
SAFER is described by Newton’s second law of mo-
tion expressed by

F = mv̇ = ṗ (1)

where F , m, v and p denote force vector, mass,
velocity vector and impulse vector. It states that
“The time rate of change of the momentum of a
particle is proportional to the force applied to the
particle and in the direction of the force.”

Rotation

The rotation is modeled by three equations
known as the Euler’s equations of motion for the
rotation of a rigid body.

Denote by Ω the angular velocity defined with re-
spect to the center of mass, and by I the moments
of inertia. The equations describing the body rota-

tions are then given by

I1Ω̇1 + (I3 − I2)Ω2Ω3 = Q1 (2)

I2Ω̇2 + (I1 − I3)Ω3Ω1 = Q2 (3)

I3Ω̇3 + (I2 − I1)Ω1Ω2 = Q3 (4)

or as a vector equation where I is a diagonal matrix:

I · Ω̇ + Ω× I · Ω = Q (5)

Qi denotes a torque causing a rotation around the
i-axis, in the body’s own coordinate system. Here,
the torque is given by the sum over the thrusters fir-
ing. Actually, a component Qth is calculated by the
cross product of a thruster’s position vector relative
to the center of mass and its force. SAFER does not
use proportional gas jets, but thrusters whose valves
are open or not, which simplifies the calculation.

Motion

In order to combine translation and rotation in a
single model of motion, suitable for our purposes,
coordinate transformations are necessary. More
precisely, the fixed coordinate system values for vi-
sualization (position and velocity) have to be related
to SAFER’s coordinate system values (angular ve-
locity).

As Ω is calculated in the body’s own coordinate
system, they have to be transformed back to the
fixed coordinate system. Given the Euler angles ϕ,
θ and ψ that denote the deviation of the fixed x, y
and z axis, the angular velocities can be calculated
according to the following formula.

Ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ (6)

Ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ (7)

Ω3 = ϕ̇ cos θ + ψ̇ (8)

The derivation of these equations can be found in
[8]. Using vector notation we get the equation:

Ω = D3(ψ) ·D1(θ) · (θ̇, 0, ϕ̇)T + (0, 0, ψ̇)T (9)

D1 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (10)

D3 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (11)

where D1 and D3 are rotation matrices that turn
the coordinate system by a given angle.

D1 and D3 are used to transform a vector from
our fixed coordinate system to a turned coordinate
system. For translation motion, the thruster’s force
vector F has to be transformed from SAFER’s coor-
dinate system to the fixed one using the transposed
rotation matrices:

(D3(ψ) ·D1(θ) ·D3(ϕ))T

Summarizing, these four vector differential equa-
tions are sufficient for modeling SAFER’s motion
over time:

v = ẋ (12)

m · v = (D3(ψ) ·D1(θ) ·D3(ϕ))TF (13)

I · Ω̇ + Ω× I · Ω = Q (14)

Ω = D3(ψ) ·D1(θ) · (θ̇, 0, ϕ̇)T + (0, 0, ψ̇)T (15)

Solving these equations with given thruster forces
results in SAFER’s position vector x(t) and the an-
gular velocity Ω(t) used for AAH.

Alternatives to the Euler’s equations model are
possible. For example, an aproach could have in-
volved the less computationally intensive quater-
nions. However, for validation purposes the model
should be as intuitive as possible, here efficiency
plays a minor role.

6 A Hybrid Model

The hybrid model of SAFER consists of the hand
controller and the Automatic Attitude Hold as its
discrete parts on one side and the equations of mo-
tion as the continuous part on the other side. Both
are modeled in Mathematica, the first in the form of
the VDM-SL specification using our VDM-SL em-
ulation package, the later in the form of ordinary
differential equations in Mathematica notation.

The combination of the discrete control system
and the continuous physical model during the test-
ing phase carries certain advantages:

Not only can the system specification be tested
in an (idealized) physical simulation, but also the
system parameters like the force of the thrusters and
the moments of inertia of the backpack can easily be
adjusted until the system responds in a way suitable
for practical use.

This is not a very rigorous approach, and it is not
intended to replace other testing tools and meth-
ods. Rather it can serve as a valuable supplemen-
tary tool.

VDMFunction[
ControlCycle,
SwitchPositions × HandGripPosition ×

RotCommand × InertialRefSensors -> ThrusterSet,

ControlCycle[SwitchPositions[mode_, aah_], rawGrip,
aahCmd, IRUSensors]:=

let[{
gripCmd=HCM‘GripCommand[rawGrip, mode],
thrusters=SelectedThrusters[gripCmd, aahCmd,

AAH‘ActiveAxes[], AAH‘IgnoreHcm[]]
},
AAH‘Transition[IRUSensors, aah, gripCmd, SAFER‘clock];
SAFER‘clock=SAFER‘clock+1;
PosData=CalcNewPosition[thrusters];
thrusters

],
True,
card[RESULT] ≤ 4 ∧ ThrusterConsistency[RESULT]

];

VDMFunction[
SensorControlCycle,
SwitchPositions × HandGripPosition -> ThrusterSet,

SensorControlCycle[SwitchPositions[mode_, aah_],
rawGrip]:=

ControlCycle[SwitchPositions[mode,aah],rawGrip,
AAHControlOut[Sensors], Sensors]

];

Figure 5. The ControlCycle function.

The Control Cycle

The ControlCycle function (Figure 5) integrates
the discrete model of hand control, thruster se-
lection and Automatic Attitude Hold (AAH) with
the continuous physical model of motion presented
above.

The Control Cycle is implemented in two differ-
ent functions. ControlCycle takes the state of the
hand control (switches and hand grip) as well as the
already calculated or manually entered AAH com-
mands and the sensor values. SensorControlCycle
takes the values of the sensors (here simulated by
the solutions of the equations of motion of the pre-
vious control cycle) and determines which thrusters
are invoked by the AAH. These are then passed on
to ControlCycle.

After determining the active thrusters and the
AAH state, the differential equations are solved nu-
merically in the CalcNewPosition function and the
current position is updated. These results simulate
the values measured by the sensors (with exception
of the heat sensors, which are left out in our model)
providing data for AAH. This part of the control
system is completely left out in [1] and only included
in the form of two unspecified functions in the PVS
model [11].

Here the SAFER state is not as trivial as in [1]
where it holds only a clock variable.

VDMFunction[
AAHControlOut,
InertialRefSensors->RotCommand,

AAHControlOut[IRUSensors]:=
let[{rr=IRUSensors."RollRate",

pr=IRUSensors."PitchRate",
yr=IRUSensors."YawRate"},

map[
ROLL->Which[

rr ≤ -EpsRoll,POS,
rr ≥ EpsRoll, NEG,
True, ZERO],

...
]]

];

Figure 6. The Bang Bang algorithm for
AAH.

State[SAFER,
Type[clock, N],
Type[PosData, PositionData],
Type[Sensors, InertialRefSensors],
Type[step, Rpos],
Type[PosDataList, List[PositionData]],

init[SAFER] := SAFER[0,
PositionData[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
InertialRefSensors[0, 0, 0, 0, 0, 0, 0, 0, 0],
1/4, {{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}}]

];

The state above also includes the current posi-
tion, Euler angles and velocities stored in a variable
of type PositionData.

Even the past position data is stored for provid-
ing full information about SAFER’s trajectory. For
simulation this data will be used to display the his-
tory as a Mathematica ”movie” showing the astro-
naut flying around in the coordinate system.

Automatic Attitude Hold (AAH)

Simulating the measured sensor values by the re-
sults of the equations of motion provides the op-
portunity of including the Automatic Attitude Hold
mechanism by a simple Bang Bang [11] algorithm: If
the angular velocity for an axis where AAH is turned
on exceeds a certain threshold, selected thrusters
are fired in order to slow down this rotation (Fig-
ure 6). AAH is limited to this mechanism because
SAFER is only based on simple thrusters with two
states: on and off.

The Differential Equations

The equations of motion used to determine the
new position of the astronaut are Newton’s and
Euler’s equations described above. Although this

model neglects any gravitational forces and other
disturbing influences, they could easily be added by
an additional acceleration in the equations or ran-
dom fluctuations applied to the results of the differ-
ential equations.

The new position is obtained by numerically solv-
ing the equations rather than algebraically which is
less time-efficient, beside the fact that the algebraic
solution is not necessary as only the result at time
step is needed for simulation.

Since the equations are only slightly coupled,
they can be solved in four steps, which is numeri-
cally more stable than solving them all at once. This
functionality is provided by Mathematica’s NDSolve
function, which takes the differential equations and
the initial conditions and returns numeric functions
that approximate the exact solutions of the equa-
tions. In this case the trajectory is calculated piece-
wise: in every control cycle the trajectory only for
that cycle is solved using the position before the cy-
cle as the initial conditions and the force and torque
applied by the thrusters as parameters. These can
easily be calculated, the force by a simple vector ad-
dition of the forces applied by every single thruster,
and the torque by adding up the cross products of
the thruster positions with the force applied by that
thruster.

First, Euler’s equation in the astronaut’s coor-
dinate system is solved giving the angular velocity.
This needs the forces and the torque applied by the
fired thrusters as parameters. The result is then
transformed back to the fixed coordinate system
and used to solve the differential equation for the
Euler angles. In a third step Newton’s equation can
be solved using the results from the previous equa-
tions. Finally, a simple integration of the velocities
gives the position of the astronaut.

These numerical solutions to the differential
equations can also be used to investigate stability.
In the simplified case without any external forces
like gravitation, this might not be so interesting,
but as soon as external forces are modeled into the
differential equations, stability is a crucial concern.
What happens if the hand controller keeps in the
same position over a long period of time? Such
questions can easily be answered by solving the dif-
ferential equations for a time period longer than just
the control cycle.

7 Simulating SAFER

Mathematica does not only provide algebraic and
numeric functionality, but also an extensive reper-

toire of plotting functions. Thus Mathematica has
also been used to visualize SAFER’s current posi-
tion together with other state information.

 Hand Grip input control

Mode

Translation

Rotation

Button

Up

Down

lt � +yaw rt � -yaw

fw � �

¬ Å ®

bw � ¯ �

z �roll

up

zero

down

pitch

pitch up H+L
zero

pitch down

 AAH control Output (optional)

Determine AAH output :

Auto

Enter AAH Output :

roll left

zero

roll right

pitch up

zero

pitch down

yaw left

zero

yaw right

Cycles = 1 �; Reset Position Run Control cycle

Figure 7. The GUI for the hand controller.

An interface to the hand controller similar to that
in [2] is provided in Mathematica (Figure 7). It
contains buttons for all the hand controller states
as well as for manual input of the AAH output for
overriding the simulated AAH in the model.

Pressing one of the buttons sets a global variable
that is used to determine the parameters passed to
the ControlCycle function. Additionally, the ”Cy-
cles=1” button determines how many control cycles
should be evaluated when the ”Run Control Cycle”
button is pressed.

Pressing ”Run Control Cycle” initiates the con-
trol cycle and after calculating the new position
prints out a plot of the astronaut’s path so far to-
gether with his orientation indicated by the axes of
his own coordinate system (Figure 8). Additionally,
his velocity and angular velocity are shown as vec-
tors. Optionally a table with the list of the fired
thrusters as well as the axes where AAH is turned
on is printed.

Since all the previous position data is stored,
Mathematica can even animate this graph so that
one can inspect the SAFER moving through space.

A graphical interface to the simulation like in
Figure 7 is interesting when testing the system’s be-
havior in general. However, when adjusting param-
eters or testing specific cases, it’s more convenient
to run the control cycles directly using Mathemat-
ica input commands. Figure 9 shows the input to
create Figure 8.

In [1] the visualization is done outside the
toolbox using dynamic link modules, which are
programmed specifically for this one application.
In Mathematica, changing only the differential
equations suffices to include other influences like

-10

-5

0

X

-10
-7.5

-5
-2.5

0
Y

0

2

4

6

Z

-10

-5

0

X

0

2

4

6

Z

Figure 8. A sample trajectory of the
SAFER.

gravity, as Mathematica chooses the algorithm to
solve the equations.

However, testing in Mathematica is not restricted
to graphical simulation. Like in [1], the output of
the thruster selection logic can be validated by enu-
merating all possible states of the Hand controller,
or in an extended version enumerating all possible
states of the hand controller and the AAH. Fig-
ure 10 shows these functions formulated in Math-
ematica’s VDM-SL notation. On every possible
state, ControlCycle is applied to calculate the fired
thrusters. The result of this large map comprehen-
sion then has to be investigated manually.

Another important part in the process of veri-
fying software would be coverage testing, which is
unfortunately not possible in Mathematica.

8 Enhanced Analysis of the System

The simulation possibilities described in the last
section can be exploited for risk and safety analysis
of the system. A very simple application is the case
when one of the thrusters fails due to a mechanical
defect or an iced valve. The most important ques-
tions in this scenario are whether the astronaut will
still be able to navigate the system, and whether it
is possible to return before the air or the nitrogen
for the thrusters is used up.

We investigated the functionality of AAH in the
case where one thruster (6-F2) fails. Figure 11
shows the angular velocity of the system, with the

ResetSAFERPosition[];
(* 1 right *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],{1}];
(* 3 yaw *)
Do[SensorControlCycle[SwitchPositions[ROT,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],{3}];
(* 15 "right" *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],{15}];
(* wait *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,POS,ZERO]],{2}];
(* 3 up *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[POS,ZERO,ZERO,ZERO]],{3}];
(* 6 down *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[NEG,ZERO,ZERO,ZERO]],{6}];
(* 5 up *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[POS,ZERO,ZERO,ZERO]],{5}];
(* nothing, just keep floating in space *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[ZERO,ZERO,ZERO,ZERO]],{6}];
(* finally, 2 down *)
Do[SensorControlCycle[SwitchPositions[TRAN,UP],

HandGripPosition[NEG,ZERO,ZERO,ZERO]],{2}];

Figure 9. The commands to create the sam-
ple trajectory.

hand grip set to forward acceleration. Just be-
fore cycle 4 is initiated, thruster 6-F2 breaks, which
would be used in this acceleration. This leaves
thruster 7-F3 applying an additional torque to the
system, which results in an increasing angular ve-
locity. In cycles 9 and 10 the astronaut initiates
AAH, but keeps the forward acceleration (cycles 10
to 17 and 20 to 25). AAH is now only able to com-
pensate the additional torque, but not to reduce the
angular velocity. Only when the forward accelera-
tion is turned off (cycles 17 to 20 and 25 to 30),
AAH shows effect.

The functionality of AAH could be improved by
immediately excluding thruster 7-F3 from the trans-
lational commands when thruster 6-F2 fails (and
thus allowing thruster 3-B3 to be used by AAH in-
stead of 6-F2). This would require a slightly modi-
fied and more complex thruster selection logic, pro-
viding a higher level of safety for the astronaut.

9 Concluding Remarks

In this article a hybrid model of NASA’s SAFER
system has been presented using the specification
language VDM-SL inside the computer algebra sys-
tem Mathematica. We demonstrated that the im-
plementation of a VDM-SL package for Mathemat-
ica provides both, VDM-SL’s powerful language fea-

VDMFunction[ControlCycleTest,
SwitchPositions × HandGripPosition × RotCommand ->

ThrusterSet,
ControlCycleTest[SwitchPositions[mode_, aah_], rawGrip,

aahCmd]:=
SelectedThrusters[HCM‘GripCommand[rawGrip, mode],

aahCmd, AAH‘ActiveAxes[], AAH‘IgnoreHcm[]],
True,
card[RESULT]≤ 4 ∧ ThrusterConsistency[RESULT]

];

VDMFunction[BigTest,
{}->(HCM‘SwitchPositions × HCM‘HandGripPosition ×

AUXIL‘RotCommand -> ThrusterSet),
BigTest[]:= map[({switch, grip, aahLaw}->

ControlCycleTest[switch, grip, aahLaw])|
{switch∈switchPositions, grip∈gripPositions,
aahLaw∈allRotCommands }]

]

VDMFunction[HugeTest,
{}->(HCM‘SwitchPositions × HCM‘HandGripPosition ×

AUXIL‘RotCommand -> ThrusterSet),
HugeTest[]:= map[({switch, grip, aahLaw}->

ControlCycleTest[switch, grip, aahLaw])|
{switch∈switchPositions, grip∈allGripPositions,
aahLaw∈allRotCommands}]

];

Figure 10. The testing functions.

tures, like comprehensions, as well as the mathemat-
ical power of Mathematica, e.g. solving differential
equation systems.

The SAFER example shows the validation pos-
sibilities of such a combined tool. Like in [1] the
complex discrete model of the control logic can be
validated through testing. This is a cheap technique
for raising the confidence that the right model has
been specified prior to the application of more ex-
pensive formal proof techniques.

However, with the right tool, there is no rea-
son why the continuous models of a hybrid system
should be excluded from validation. Such a hybrid
validation is more suitable for finding unjustified do-
main assumptions made in the discrete model. We
strongly propose such validations, due to the fact
that making wrong assumptions is the weak point
of formal verification techniques, possibly leading to
correct proofs of the wrong model.

Furthermore, we demonstrated that the visual-
ization features of Mathematica provide a conve-
nient way to communicate a model to a customer.
Moreover, in contrast to [1], our visualization is a
functional graph that facilitates the communication
to control experts as well as to customers with a
technical expertise.

In the Irish school of VDM, Mathematica has
been used to explore explicit VDM specifications
[14], but to our present knowledge not for modeling
hybrid systems.

5 10 15 20 25
Cycle

0.5

1

1.5

2

2.5

Angular
velocity

Figure 11. Angular velocity with a broken
thruster, AAH initiated in cycle 9.

Note that the conclusion of our work is not that
Mathematica is the best tool for validating hybrid
system specifications. Our Mathematica approach
has its disadvantages, too: Our VDM-SL represen-
tation is not as readable as the notation of standard
VDM-SL and a typed language would be more suit-
able for specification purposes. Rather than propos-
ing a certain tool, our work points out the features
a powerful toolset should provide for validating hy-
brid systems.

Another future approach would be the integra-
tion of a classic formal method tool with a com-
puter algebra system. For example a combination
of Mathematica with the IFAD VDM-SL Toolbox
used in [1] would be a possibility. This could be re-
alized with the lately developed CORBA API of this
tool, that enables access to the toolbox as a CORBA
object and thus calling its VDM-SL interpreter from
programs implemented in C or Java. Mathematica
provides an interface through its MathLink facility.

Summarizing, we feel that our approach of hy-
brid validation is a valuable technique for produc-
ing systems of higher reliability and hope that it will
stimulate further research in this area.

Acknowledgment

Many thanks to William Milam from the Ford
Motor Company. At the FME’96 conference, he
pointed the first author to the industrial needs of an-
alytical methods and tools for hybrid systems. Pe-
ter Gorm Larsen and Peter Lucas were kind enough
to comment on a draft of this paper for which we
are very thankful. Finally, the authors would like
to thank the four anonymous referees for the inter-

esting comments and suggestions.

References

[1] Sten Agerholm and Peter Gorm Larsen. Model-
ing and validating SAFER in VDM-SL. In Pro-
ceedings of the Fourth NASA Langley Formal
Methods Workshop (Lfm97). NASA, Septem-
ber 1997. http://shemesh.larc.nasa.gov/
fm/Lfm97/proceedings/.

[2] Sten Agerholm and Peter Gorm Larsen.
SAFER specification in VDM-SL. Technical re-
port, IFAD, September 1997. VDM Examples
Repository: http://www.ifad.dk/Products/
VDMTools/vdmsl-examples.htm.

[3] Bernhard K. Aichernig. Teaching programming
to the uninitiated using Mathematica. Techni-
cal Report IST-TEC-98-03, Institute for Soft-
ware Technology, TU-Graz, Austria, May 1998.

[4] Bernhard K. Aichernig. Automated black-
box testing with abstract VDM oracles. In
M. Felici, K. Kanoun, and A. Pasquini, editors,
Computer Safety, Reliability and Security: pro-
ceedings of the 18th International Conference,
SAFECOMP’99, Toulouse, France, September
1999, volume 1698 of Lecture Notes in Com-
puter Science, pages 250–259. Springer, 1999.

[5] Georg Droschl. Events and scenarios in VDM
and PVS. In 3rd Irish Workshop in For-
mal Methods, Galway, Electronic Workshops in
Computing. Springer-Verlag, July 1999.

[6] John Fitzgerald. Information on VDM. VDM:
http://www.csr.newcastle.ac.uk/vdm/.

[7] John Fitzgerald and Peter Gorm Larsen. Mod-
elling Sytems, Practical Tools and Techniques.
Cambridge University Press, 1998.

[8] Walter Hauser. Introduction to the Principles
of Mechanics. Addison-Wesley, 1965.

[9] Johann Hörl and Bernhard K. Aichernig. For-
mal specification of a voice communication
system used in air traffic control, an indus-
trial application of light-weight formal meth-
ods using VDM++ (abstract). In J.M.
Wing, J. Woodcock, and J. Davies, edi-
tors, Proceedings of FM’99 – Formal Meth-
ods, World Congress on Formal Methods
in the Development of Computing Systems,
Toulouse, France, September 1999, volume

1709 of Lecture Notes in Computer Sci-
ence, page 1868. Springer, 1999. Full re-
port at ftp://ftp.ist.tu-graz.ac.at/pub/
publications/IST-TEC-99-03.ps.gz.

[10] Cliff B. Jones. Systematic Software Develop-
ment Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edition,
1990.

[11] John C. Kelly and Kathryn Kemp. Formal
methods, specification and verification guide-
book for software and computer systems, vol-
ume II: A practitioner’s companion, planning
and technology insertion. Technical Report
NASA-GB-001-97, NASA, Washington, DC
20546, May 1997.

[12] SRI Computer Science Laboratory. The PVS
specification and verification system. PVS:
http://pvs.csl.sri.com/.

[13] P. G. Larsen, B. S. Hansen, H. Bruun,
N. Plat, H. Toetenel, D. J. Andrews, J. Dawes,
G. Parkin, et al. Information technology —
Programming languages, their environments
and system software interfaces — Vienna De-
velopment Method — Specification Language
— Part 1: Base language, December 1996. In-
ternational Standard ISO/IEC 13817-1.

[14] Colman Reilly. Exploring specifications with
Mathematica. In Proceedings of the Z User
Workshop, Department of Computer Science,
Trinity College, Dublin, 1995.

[15] Rudi Schlatte and Bernhard K. Aichernig.
Database development of a work-flow planning
and tracking system using VDM-SL. In John
Fitzgerald and Peter Gorm Larsen, editors,
Workshop Materials: VDM in Practice!, Part
of the FM’99 World Congress on Formal Meth-
ods, Toulouse, September 1999.

[16] Stephen Wolfram. The Mathematica Book.
Wolfram Media/Cambridge University Press,
3rd edition, 1996.

